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SUMMARY ﬂ.Q'(oﬁ

This is the final report of the program "Computer Solutions of the Vlasov
Equations", performed for the National Aeronautics and Space Administration
under Contract NAS 8-521k. The work was executed by a combined effort of the
Applied Research and Aerodynamics Operation, Flight Propulsion Division, and
the Space Power and Propulsion Section, Missile and Space Division of the
General Electric Company. The period of performance was from 1 June, 1963
to 30 November, 1964. The NASA Program Manager was Dr. Robert N. Seitz,

George C. Marshall Space Flight Center, Huntsville, Alabama.

Computer programs were written to determine solutions of the Vlasov
equations for plane, cylindrical and spherical geometries. Potential
distributions and charge density distributions were found for each of these
configurations under a range of conditions. Values of the independent para-
meters of bias potential, electrode spacing (in Debye lengths), and charge
density ratio, were chosen so as to yield a wide variety of types of

solutions. The fundamental physical characteristics of each of these systems

were established. W

The participants in this program were Dr. D. C. Prince, Jr., and N. P.
Jeffries as the Principal Investigators, with A. Wikoff and L. Cumbers as

Engineering Assistants.
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I,

Introduction and Physical Picture

Two related physical problems provide the inspiration for studying
solutions of the collisionless Boltzmann or Vlasov equations(]). In the
first problem (FigJd-l), designated the "diode problem"', the objective is
to predict current-voltage characteristics between two electrodes, an
emitter and a collectoryin the presence of a plasma. Primary attention is
given to an emitter on which charged particles are fofmed. The particles
may have either positive or negative charges. In principle, the electron
current, leaving the emitter, of positively charged particles and negatively
charged particles may be varied quite independently. For example, if the
emitter is a hot oxide-coated surface in the presence of a metallic cesium
vapor, the electron emission might vary with temperature according to the
Richardson-Dushman relation, (Ref.2 ) while the ion current (assuming that
all neutral atoms striking the hot surface are ionized) would be a simple
Tunction of the vapor pressure. Facing the emitter there is a collector
at some electrostatic bias potential relative to the emitter. The bias
potential might be applied ex£ernally or it might be a result of the Fermi
effect. The motion of the charged particles after leaving the emitter is
determined by the electrostatic field distribution, which in turn is
the result of both the distribution of space charge in the field and the
applied bias potential. It is assumed that any charged particle reaching
the collector, or touching the emitter upon returning, disappears, either

into the external circuit or by losing its charge and forming a neutral atom.
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The Plasma Diode Configuration
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It is further assumed that the emitted particles, both ions and electrons,
possess velocity distributions satisfying a half-Maxwell-Boltzmann relation,
while the complete velocity distribution at any point in the configuration
is the Maxwell-Boltzmann relation modified by appropriate momentum and energy

relations.

Diode configurations which are considered in this study either have an
electrode spacing which is small compared to the radius of curvature (including
the plane case), or are concentric cylindrical or spherical situations with

the collector external to the emitter.

The second problem is designated as the "probe problem" (Fig. II-2). The
intent here is to predict the disturbance caused by a small object at some
enforced bias potential relative to a plasma inside a much larger (or near
infinite) container. The disturbance involves, in general, both a local
departure from an essentially neutral plasma and a charged particle current
of one sign or the other from the plasma to the probe. Cylindrical or spherical
symmetry is implied by the definition of the problem. The distinguishing
feature of the probe problem as compared with the diode problem is that most
particles of either sign leave the emitter with a velocity component per-
pPendicular to the radius, which, under the action of constancy of angular
momentum, prevents them from negotiating the bias potential barrier to the
collector or probe. Instead, these particles follow trajectories which
become entirely tangential at some radius and finally return to the emitter.
The net charged particle current of either sign is a small fraction of the

emitted current. A special case of the cylindrical plasma diode, the

-3-
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cylindrical monode or plasma inside a cylindrical container, was treated at

some length in Re.'. 3,

At the start of investigation under this contract, it was expected thet
the effort would be placed on cylindrical and sphericéi geometries, rather
than on the plane geometry. Fairly early in the program, however, it became
apparent that peculiarities in the behavior of cylindrical geometry solutions
(primarily instability of a near-neutral charge densiﬁy distribution) ware
present. It seemed likely that study of the plane situatiorn would oprovide
considerable insight into the nature of the problems of the curved geometries.
After this work was well aleng, several references to other studies on plenar
plasma diodes were identified (Refs. 4, 5, & 6 ). The systematic aralysis
and presentation of this investigation does seem to be a ccntribution to under-

standing the behavior of planar plasma diodes.




Philosophy and General Discussion of Analysis Methods

The potential distribution in a plasma diode satisfies Poisson's Equation,
including a complex space charge density. This charge density at any point is
supposed to be the result of an initial formation of charged particles with
a thermal distribution of particle velocities, and a subsequent history of the
particle motion consistent with appropriate laws of motion. Altogether, five
successive mathematical integration operations must be performed in the process
of arriving at the solution. Summation of particles,‘identified by their
velocity components in three mutually perpendicular coordinate directions, to
get the charge density, accounts for three of the five integrations..The
remaining two integrations appear in the solution of the second order ordinary

differential equation (made ordinary by symmetry assumptions).

Depending on the particular facet of the éeneraliproblem, one or more of
the five integrations may be carried out analytically and disposed of. One
or two more of the integrations may require numerical evaluation, but do
allow such numerical evaluation to be carried out explicitly, once and for .all.
Most of the time, however, at least one of the integrations must be carried
out by some trial-and-error or iteration scheme. Most of the effort under
this contract has been concerned with the development of workable iteration

schemes for those cases where means for explicit integration have not been

found.




In the case of the planar diode, the summations of charged particles
over two out of the three perpendicular velocity components reduce to
evaluation of probability integrals from zero to infinity, and consequently
lead to a particularly simple form. The summation in the third direction
can always be expressed in terms of the error function (which, however, may
reguire numerical evaluation). The complete analytical expression for the
second derivative of the potential involves two Kronecker deltas and plus-
or-minus options. The plus or minus, or the zero or one, depends on whether
the particular point lies on the emitter or the collector side cf a potential
extremum controlling transmission or reflection of the one or the other
charge particle species. In the planar case the second crder differentisl
equation can always be expressed in exact differential form and integrated
once analytically, subject to an undetermined constant of integration. At
this point, the variables are always separable, and a formula is set up for
use in explicit numerical evaluation of the firal integral which, however,
retains the corstant of integration of the earlier integration as a parameter.
The initial btoundary conditiorn can be satisfied automatically by definition of
the reference potential at the emitter, zerc distance. With the bias potentisl
as the upper limit of integration of a definite irtegral (the emitter at
reference potential is the lower limit), the parameter is varied until the

firal boundary condition is satisfied.




Classes of Solution

Solutions of the planar diode problem turned out to fall into three
main classes: monotonic potential solutions, solutions with at least one
extremum in the direction of the bias potential, and solutions with an

cxtremum in the opposite direction from the bias potential.

Each of these classes may be further subdivided, depending on whether
the number of Debye lengths in the electrode spacing is large or small, on
the number of inflection points in the potential distribution (which may
depend on both the number of Debye lengths and on the emitted electron-ion

density ratio), and on the electron-ion density ratio.

The most convenient choice of iteration parameter for the monotonic
case proved to be the slope of the potential distribution curve at the
inflection point closest to the collector. A second inflection point may
be present if the charge density near the emitter due to attracted particles
is greater than.the total charge density, including reflected particles, of
the species repelled by the bias potential, but this excess of particles
is not great enough to produce a potential extremum opposite to the bias
potential., This second inflection point does not affect the computation.
The main subdivision of monotonic cases occurs between situations where
changes in the slope of the potential distribution curve at the inflection
point do or do not produce changes in the slope at the emitter and the collector

(i.e., slope changes which can be detected by the eight significant figure
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accuracy of the computer used for evaluation). The situation when the slope
at the inflection point does not significantly influence the slopes at emitter
and collector, is referréd to as the plateau situation. An additional case
requiring special consideration occurs when the slope at the emitter is

positive and less than the slope at the inflection point.

The plateau situation may also arise where there is a potential
extremum in the opposite direction from the bias potential. In this case the
convenient iteration parameter is the value of the potential at the extremum.
The value of the potentiai at the extremum is also the convenient iteration
parameter for the case of an extremum in the same direction as the bias
potential. In this situation, however, the plateau does not appear but is
replaced by a tendency toward oscillatory solutions. This distinction between
electrode spacings which are a small number of Debye lengths and those which are
a large number of Debye lengths is made when the oscillation first appears.
Altogether, it appeared that there were about ten different situations which
had to be distinguished and given special numerical handling to give complete

coverage to the planar plasma diode problem.-

Many of the contingencies investigated in detail in the planar problem
have also been found in the cylindrical and spherical problems, but with
modifications introduced by the curved geometry. It has not yet been
possible to demonstrate ability to find cylindrical or spherical solutions
comparable to all the planar solutions. The simplest situation for which a

generally satisfactory solution seems to have been found is the situation

-9-



where the proportions of charged particles passing from the emitter to the
collector and returning to the emitter are determined entirely by the collector
bias potential. In contrast to the planar case, the charge density of any
point may be detérmined not only by the value of the potential there, but also
by the location relative to the emitter. This is a consequence of the influence
of the momentum effect in the curved geometry on the limits of admissible
velocities. We have found solutions to curved geometry problems with both
internal and external collectors, analogous to the planar situation where

the slope at the inflection point does make a difference to the slopes at
emitter and collector, provided the electrode spacing is a fairly small

number of Debye lengths. Under conditions where the planar solution approaches
a slope small enough not to influence the slope at emitter and collector, the
curved geometry solutions begin to show oscillations. These oscillations
complicate the problems of arriving at solutions considerably. As the number
of Debye lengths and the electrode spacing increases some more, it is found
that the collector bias potential is no longer the only criterion determining
the charge density. Any time there is a potential extremum in the opposite
direction from the bias potential, this extremum will serve as a barrier

to some particles which could otherwise make the transit to the collector.

The extremum itself is the barrier for particles with zero tangential

velocity. Particles with some tangential velocity will be repelled before
reaching the extremum in external collector situations, by radii beyond the
extremum for internal collector situations. 1In external collector situations
where the electrode spacing is a fairly large number of Debye lengths, the

repelling slope close to the emitter may easily be large enough to repel

-10-




|

some particles which would otherwise convert enouéh kinetic energy of
tangential velocity to radial velocity, through the angular momentum effect,
to make the transit to the collector. In internal collector situations where
there is an effective sheath close to the collector, the potentials close

to the edge of the sheath away from the collector may control the reflection

of some particles.

In cylindrical diodes, integration of velocity components parallel to
the axis of symmetry results in the complete probability integral. A second
integration of the three associated with charge density calculation becomes
possible if a transformation is made so as to express the integral in terms
of the resultant velocity and the angle made by the trajectory with the
tangential direction. The third integration for charge density has always

required numerical evaluation.

No practical procedure has been found for performing either of the
two integrations in the differential equation analytically. Some success has
been found with two techniques: (1) double numerical integration from an assumed
initial slope using charge densities evaluated from Past history and a future
history introduced by a small number of assumed input points; and (2) assuming
a complete potential distribution, calculating a charge density distribution
using this assumed potential distribution for both past and future history at
all points and then using Simpson's rule integration twice together with
appropriate constants of integration to obtain a new potential distribution.

The numerical integration of the assumed initial slope is quite effective for

-11-



those cases where a single future history point is sufficient to define all
charge densities, and almost as effective when the influence of some other
repelling potential besides the collector is only a minor modification to the
major influence of the collector potential. The use of the entire assumed
potential distribution and Simpson's rule integration has been effective for
monotonic solutions and for solu£ions in which the net charge density never
changes sign. This method has been found to be unsatisfactory for obtaining
solutions in which there is a tendency toward oscillation. It is not clear
at this time that any of the solutions obtained by this technique could not
have been obtained more easily with the technique of numerical integration

from the assumed initial slope.

Two of the three integrations of the calculation of charge density in
the spherical case may also be carried out analytically. The first one is
carried out by observing that complete polar symmetry exists for velocity
components in a plane perpendicular to the radius of the sphere. Thus, the
problem may be reduced to integration over velociﬂy components along the
radius of the sphere and perpendicular to that radius. The second integration
may be made analytically by expressing the integral over the radial velocity
components in terms of appropriate error functions. The third integration,
over the range of negative expotentials of the square of this velocity
component, must be made numerically. All spherical results have been obtained

using the first described procedure for the cylindrical problem.

-12-




IT THE PLANAR PLASMA DIODE PROBLEM

A. Introduction

The planar plasma diode was originally investigated under this contract
because of difficulties encountered in trying to sblve for the cylindrical
diode configuration. The difficulties involved the establishing of possible
conditions for neutrality or near-neutrality in the neighborhood of a
potential disturbance. It was assumed that an understanding of the planar

diode would be helpful in obtaining solutions for the cylindrical and spherical

configurations.

It was found that the planar diode was a quite interesting problem in
itselfl ana several aspects of its behavior were later observed also in the
cylindrical and spherical diode solutions. Some direct comparisons will be

made between these configurations which demonstrate the effects of the diode

geometry.

This chapter will outline the method of solution used for the planar
diode problems, and then the various types of solutions which have been found
will be discussed. Some comparisons will be made between the planar solutions

and cylindrical solutions in order to demonstrate the effects of different

geometries.
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B. Basic Equations

The basic problem is to find the potential and charge density distri-
butions in a diode with flat electrodes. If we omit consideration of the
edge effects (or assume infinite electrodes ), then the problem becomes one-
dimensional. The potential in an electrostatic field is known to obey Poisson's

equation, which can be written as follows, for the MKS system of units:

V’¢ = —47PR (IT-1)

€o

where ¢ = potential, volts

P
&

charge density, coulombs/m3

dielectric constant of the medium, farad/m

Here the medium is taken as a vacuum, so &, is unity. The net charge

density is the difference between the densities of ions and electrons,

P =e (=) (11-2)

where e = charge on a particle, coulombs
3

;= number density of ions, 1/cm

7E= number density of electrons, 1/cm3

Substituting and introducing the subscript o denoting conditions at the emitter

electrode, we have

-1 -
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The Debye length represents the maximum distance over which a given
charge can exert an intluence on other particles. It is a parameter that

can be used to non-dimensionalize the equation. It is given by:

- EAT ]
Ao = -\/477‘71,‘- e (zz-4)

where k = Boltzmann's constant, 1.38 x 1025 joule/°K

T = Temperature of particles, °k

This distance parameter can be normalized by dividing by the electrode spacing
L, and the potential can be expressed in electron-volts by using the parameter
&= %% - Substituting these quantities into equation (II-3), we obtain a

convenient form for the potential variation,

z U
vz ed __ Lz Ne o 72;) (II-5)
T Ap Yep Nio Mo
2
vhere §7z=== ——— and the Debye length is here based on total ion density at
(4 )*

the emitter (although emitted ion density is probably preferable because it is

an inaependeﬁt variable).

It has been shown in Reference 1 that the velocity distribution of the
particles at the emitter may be taken as a half-Maxwellian, that is the
velocities have the Maxwellian distribution but all are directed avay from the

emitter. Therefore, the probability function of the velocities is given by:

-15-



2
f = K c ~T (1I-6)

vhere ¥ Uy, Uz are velocities in each direction and K is a

s
normalizing constant. The number density of particles is then the integral

of all possible velocity vectors for a cube of the phase space

0® o0 - oo
e (%, ¢, Z) =///7@[x)%2)1/1)16)1f3)/4¢{19 Ay (II-7)

-0 e2p =00

When the problem involves only two dimensions, such as when there is no variation

with z, the integration may be carried out immediately:

m 1., 1
ne(x,q)= 12 Ke i*//e (6% v, (11-8)
or this can be normalized with the emitter charge density

A xa,y‘z
netog) _ % ffe Zr (5% 4, v,

n s 20 9,%) (11-9)
€o // -2*'7‘ (1&¢, * 50
C ﬁ/ﬂ;o 5/@0
For the planar diode, the variation is in the x-direction only
mvg®
ed - RT
n xr | C dv;
e _ € al (1I-10)

Neo B Y
/6 227 Ay,
If we consider a monotonic distribution of potential, then the limits of
integration can be determined. In some cases, the potential distribution will

not be monotonic but rather it may have a potential peak or valley between the

emitter and collector. These cases will be dealt with later in this chapter.
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It should be mentioned that we are being sufficiently general when we consider
only bias potentials which are attractive to electrons, because the solutions
for bias potentials attractive to ions will simply be mirror images of the

solutions we obtain here.

Under the conditions of such a monotonic potential variation attractive
to eleéfrons, all the electrons are formed at the emitter and make the transit
to the collector. This means that all the electromns found at a point in the
electrode spacing which has a potential ¢ have been accelerated through that
potential. Therefore, their velocity is at least as large as the kinetic
energy appropriate for that potential acceleration, and the lower limit of

velocities is thus given by:
+omy? =ed (I1-11)
or

. o /e (11-12)
% V2= 3

The upper limit on these velocities is infinity. These conditions allow

equation (II-10) to be written as:

fs.zei%(,_b%yg) L @)

Heo
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For the ions, particles are traveling in both directions because many of them
are decelerated and turned around by the opposing potential gradient. The
particles traveling in the positive direction may have all energies, but the
minimum initial energy is that which is removed by deceleration through the
potential difference. The lower limit for returning particles is also zero,
but there is an upper limit above which the particles had enough energy to

negotiate the bias potential difference. Therefore the expression becomes:

mv, >
714 7/‘}/_”1)
we _ C *T/mﬁ < o (" gl (11-14)
e /w ]
zAr
e A (8, V)
which integrates to become
-_é )/ Cg ¢=-¢)
L - e A /+«(%4/ s (II-15)

rT
z - £
= 3
_ o
¢< - Ao

and equation (5) becomes

a4*@ 2 é -é /f&/v?’a'z
A x* = [KC (/_07‘@)‘6 /7‘%/@- ](11-16)
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The electron current density leaving the emitter may Be determined from the
charge density there multiplied by the average particle velocity away from

the emitter. This average velocity may be found by integrating the particle
velocity component in the positive direction times the probability function

over the full range of admissible velocity vectors,

- DeV M
“ et HE [ ’//;)’{/{f)(n )
_//é .—:7<;2 R A 7, 722%;;)

Jeo = Wey € 12R7 /7 m

or since

Noe = (11-18)

the electron current can be written as

| %
L, = Lo > } (11-19)
e 2?2 \zre

This current density was evaluated at the emitter but it could have been

evaluated a= any other point, with the same result. Thus, j is constant with

@ (or x ) as it should be.

The net ion current is conveniently integrated at the emitter. 1In
contrast with the situation for electrons, the limits of integration depend
on the bias potential. Using the appropriate limits of integration, we can

find the emitter electron current density.
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J 2, S 27/ e %
lo — — o w V7 //.I%Wg—c' (11-20)

The equation for the potential distribution, equation (11-16), can
be simplified by integrating it once. This is done by first multiplying by:]?.

Then we have:

/éig ,f/ﬁe@(”’ﬁzmé / pfie .t/ Z £-2 Z’ (11-21)

/ /] / 2
(38" =L(F)
and f_é /
S (g T = = iif TV Ee)(F)E
= (1= g B+ ZVE

1/1 /sz—“—g=_ ol ST ~z‘(r@f—f)(g)
1+ ot VE /+7Z YE, (/f‘% VZ)(’-V___—>

_ I+t V8, —§+Y—@§yc_
/1‘1/%)[_ /f}%y_—
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Thus, we have

2 2 2 /+ }’_E;___ -
H(2) =L fl-np @It ) SEE S

_ic—f;yﬂ—f 4 C (11-22)
V7 Irefd JE 2

The variables can then be separated

x4
x= = ——(11-23)
V2L - 180+ 2 rf]w/g% T-F '47’7“5}% =

This equation can then be integrated numerically on a computer. The constant

C is determined so as to give the valué’unity when the right-hand side is

integrated fromf = 0 to & = ac.

For large values of &, the evaluation of the first term on the right-

hand side of Equation II-16 is facilitated by using an expansion,

I/_— 7/5—'):_ / ! ‘/oj_ /-3-5 .. _
el(1—ef 7‘7_/7_—5'—/; ST e BTt (II-24)

The preceding equations are the basic forms which are used to find
solutions for the planar plasma diodes. These equations are modified for the
cases of a potential maximum or potential minimum between the electrodes,
and these cases will be accounted for by altering the limits of integration

on the expression for charge densities.
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C. Types of Solutions

The potential distributions in a planar plasma diode can be generally

classified into the following types:

1. Monotonic Solutions
2. Potential Minimum Solutions
3. Potential Maximum Solutions

L. Potential Oscillations with Amplitude Greater Than the Bias Potential

The first three of these classes have been investigated extensively under this
Contract; the fourth type has been proven to exist but no exact solutions were

obtained.

The particular type of solutions obtained for a planar diode depends on
the physical parameters involved, especially the ratio of electron density to
ion density at the emitter. This parameter is denoted aso and it has been varied
from 0.05 to 5.0 in these investigations. The bias potential has been chosen as
2 kT/e and an electrode spacing of nine Debye lengths is used here. For a value
of A between about 0.2 and 1.25 a monotonic variation of potential is found. For
A greater than 1.25, a minimum in the potential is found near the emitter. For
A less than 0.2 a maximum in the potential is observed, and oscillations in the
potential occur between the potential maximum and the collector. As A is decreased
below 0.2, the amplitude of the oscillations grows until, at some value of
somewhat less than 0.1, the amplitude of the oscillations becomes larger than the
bias potential. Under these conditions, there exists at least one potential
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maximum and one potential minimum outside the range of the bias potential.
Each of these types of solutions will be discussed in this section, and
some exsmples of each will be given. The modifications in the basic equations

needed for the potential maximum and potential minimum cases will be explained.

l. Monotonic Solutions

Solutions have been obtained for a planar plasma diode configuration
under a wide range of parametric conditions. The electrode spacing has been
nondimensionalized by dividing by the Debye length. Since the Debye length
is a function of ion density, dielectric constant, and temperature, this means
that the (177\D) parameter actually combines a number of variables. Usually it
is considered as a function of electrode spacing or space charge density since

these are often the variables of interest.

The following ranges were investigated in this study (although not

simultaneously):

Bias potential = §: 2 to 1000 kT/e
Electrode spacing/Debye length = L/ﬁ\D : 0 to 500

Emitter electron/Ion density =k : 0.05 to 5.0

A computer program was written to find these solutions. It required
revision several times to account for unexpected phenomena. The listing for
this program is given in Appendix A of this report. The input quantities for
this program are listed in Tables I and II, where Table I shows the necessary

input to obtain a solution and Table IT has additional input quantities which
-23-
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TABLE II-1

MINIMUM INPUT FOR PLANAR PLASMA DIODE PROGRAM

et e

MONTH, three numbers of two digits each describing month, day, and
year, of the calculation.

DEBYE, the number of Debye lengths in the electrode spacing.

POT, the collector bias potential (only positive values may be used).

ETA, the ratio of emitted electron density to total ion density at
the emitter.

2l -
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& Col,.

TABLE II-2

OPTIONAL INPUT FOR FLEXIBILITY IN SOLUTIONS OF PLANAR DIODE PROBLEMS

Col. 2

ILPRINT, should be input as 2 if a printout after each iteration

KPRINT,

DEBYY>

PHIPRM,

is desired.

should be input as 1 if the output data are to be edited
to put on a single page. This feature is not often used
because it would be likely to destroy the detailed pre-
sentation of data in potential minimum and/or plateau
regions.

an alternative to DEBYE if it is desired to use a Debye
length as the unit of lepgth replacing the electrode
spacing. This has occasionally proved to be useful in
cases where the electrode spacing is a large number of
Debye lengths (greater than 200).

may be input if desired as a starting point for the
iteration of monotonic type solutions. This value
will be taken as the slope of the potential distri-
bution curve at the inflection point, where the net
charge density changes from ion rich to electron

rich going toward the collector, if there is such a
point. If there is no inflection point, this will

be the slope of the potential curve at the emitter.

If PHIPRM is not input,the initial value chosen will
be the straight line value for very low plasma density.

PHIM, may be input as a starting value for potential minimum
type solutions. The value must be negative; its absolute
value should be less than the absolute magnitude of the
true minimum value.

XLOOP,

may be input to give a maximum number of iterations diff-
erent from 15. Our experience here is that the solution
for any configuration will converge in fewer than 15 loops
if it converges at all.

~-25=




can be used to speed up the solution or obtain additional information.

The results of these computer runs have been graphed, usually in the
form of potential as a function of distance from the emitter and charge
density as a function of distance. In Figure II-la is shown the variation
of potential with distance for ratios of electrode spacing to Debye length
from O to 100. The curves for 30 and 100 become plateaus at a potential
of about 0.75 kT/e as will be shown on later curves. All the curves on this
graph are calculated for a bias potential of 2 kT/e. In Figures II-1b, II-lc,
and IT-1d, the bias potential has been increased to 5, 10, and 20 kxT/e respect-
ively, but the shape of the potential curve has not been greatly altered. A
closer look at the variation of potential in the regions near the emitter and
collector may be obtained from Figures II-2a, 2b, 2c, and 2d. The characteristic
nature of the potential distribution in the sheath for distance measured in Debye
lengths is apparent. However, the coincidence of L/)D = 30 and LAAD = 100 for
ﬁc = 20 %? may be qusstionable. The effect of bias potential as an independent
parameter may be seen in Figures II-3a, 3b, 3c, and 3d. Then in Figures II-ita,
b, and L4c, the variation of densities of ions and electrons are shown as a
function of distance from the emitter. These charge density distributions
correspond to the same parametric variations as applied to the preceding potential
distribution curves. Note that all these solutions begin with a neutral plasma

at the emitter.

Some interesting observations may be made from a study of these curves.
It is apparent that the influence of small disturbances on a neutral plasma is
to reduce the charge density faster by acceleration than by retardation, when

starting from a reference potential condition where all velocities are present.
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Therefore, an ion-rich condition appears in the region of the emitter. Farther
away from the emitter, the electron d